首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3790篇
  免费   399篇
  国内免费   262篇
  2023年   31篇
  2022年   29篇
  2021年   140篇
  2020年   100篇
  2019年   150篇
  2018年   144篇
  2017年   123篇
  2016年   167篇
  2015年   265篇
  2014年   281篇
  2013年   297篇
  2012年   367篇
  2011年   324篇
  2010年   216篇
  2009年   190篇
  2008年   234篇
  2007年   202篇
  2006年   164篇
  2005年   139篇
  2004年   138篇
  2003年   126篇
  2002年   120篇
  2001年   66篇
  2000年   52篇
  1999年   53篇
  1998年   25篇
  1997年   20篇
  1996年   24篇
  1995年   15篇
  1994年   20篇
  1993年   20篇
  1992年   22篇
  1991年   14篇
  1990年   17篇
  1989年   9篇
  1988年   13篇
  1987年   10篇
  1986年   16篇
  1985年   6篇
  1984年   12篇
  1983年   11篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   6篇
  1976年   8篇
  1975年   10篇
  1974年   9篇
  1970年   3篇
排序方式: 共有4451条查询结果,搜索用时 18 毫秒
71.
Gap junctions (GJs) play an important role in the regulation of cell response to many drugs. However, little is known about their mechanisms. Using an in vitro model of cytotoxicity induced by geneticin (G418), we explored the potential signalling mechanisms involved. Incubation of cells with G418 resulted in cell death, as indicated by the change in cell morphology, loss of cell viability and activation of caspase‐3. Before the onset of cell injury, G418 induced reactive oxygen species (ROS) generation, activated oxidative sensitive kinase P38 and caused a shift of connexin 43 (Cx43) from non‐phosphorylated form to hyperphosphorylated form. These changes were largely prevented by antioxidants, suggesting an implication of oxidative stress. Downregulation of Cx43 with inhibitors or siRNA suppressed the expression of thioredoxin‐interacting protein (TXNIP), activated Akt and protected cells against the toxicity of G418. Further analysis revealed that inhibition of TXNIP with siRNA activated Akt and reproduced the protective effect of Cx43‐inhibiting agents, whereas suppression of Akt sensitized cells to the toxicity of G418. Furthermore, interference of TXNIP/Akt also affected puromycin‐ and adriamycin‐induced cell injury. Our study thus characterized TXNIP as a presently unrecognized molecule implicated in the regulatory actions of Cx43 on oxidative drug injury. Targeting Cx43/TXNIP/Akt signalling cascade might be a promising approach to modulate cell response to drugs.  相似文献   
72.
73.
Autophagy is a vital pathway for the removal of β-amyloid peptide (Aβ) and the aggregated proteins that cause Alzheimer’s disease (AD). We previously found that cilostazol induced SIRT1 expression and its activity in neuronal cells, and thus, we hypothesized that cilostazol might stimulate clearances of Aβ and C-terminal APP fragment β subunit (APP-CTFβ) by up-regulating autophagy.When N2a cells were exposed to soluble Aβ1–42, protein levels of beclin-1, autophagy-related protein5 (Atg5), and SIRT1 decreased significantly. Pretreatment with cilostazol (10–30 μM) or resveratrol (20 μM) prevented these Aβ1–42 evoked suppressions. LC3-II (a marker of mammalian autophagy) levels were significantly increased by cilostazol, and this increase was reduced by 3-methyladenine. To evoke endogenous Aβ overproduction, N2aSwe cells (N2a cells stably expressing human APP containing the Swedish mutation) were cultured in medium with or without tetracycline (Tet+ for 48 h and then placed in Tet- condition). Aβ and APP-CTFβ expressions were increased after 12~24 h in Tet- condition, and these increased expressions were significantly reduced by pretreating cilostazol. Cilostazol-induced reductions in the expressions of Aβ and APP-CTFβ were blocked by bafilomycin A1 (a blocker of autophagosome to lysosome fusion). After knockdown of the SIRT1 gene (to ~40% in SIRT1 protein), cilostazol failed to elevate the expressions of beclin-1, Atg5, and LC3-II, indicating that cilostazol increases these expressions by up-regulating SIRT1. Further, decreased cell viability induced by Aβ was prevented by cilostazol, and this inhibition was reversed by 3-methyladenine, indicating that the protective effect of cilostazol against Aβ induced neurotoxicity is, in part, ascribable to the induction of autophagy. In conclusion, cilostazol modulates autophagy by increasing the activation of SIRT1, and thereby enhances Aβ clearance and increases cell viability.  相似文献   
74.
Costaria costata is a commercially and industrially important brown alga. In this study, we used next-generation sequencing to determine the complete plastid genome of C. costata. The genome consists of a 129,947 bp circular DNA molecule with an A+T content of 69.13% encoding a standard set of six ribosomal RNA genes, 27 transfer RNA genes, and 137 protein-coding genes with two conserved open reading frames (ORFs). The overall genome structure of C. costata is nearly the same as those of Saccharina japonica and Undaria pinnatifida. The plastid genomes of these three algal species retain a strong conservation of the GTG start codon while infrequently using TGA as a stop codon. In this regard, they differ substantially from the plastid genomes of Ectocarpus siliculosus and Fucus vesiculosus. Analysis of the nucleic acid substitution rates of the Laminariales plastid genes revealed that the petF gene has the highest substitution rate and the petN gene contains no substitution over its complete length. The variation in plastid genes between C. costata and S. japonica is lower than that between C. costata and U. pinnatifida as well as that between U. pinnatifida and S. japonica. Phylogenetic analyses demonstrated that C. costata and U. pinnatifida have a closer genetic relationship. We also identified two gene length mutations caused by the insertion or deletion of repeated sequences, which suggest a mechanism of gene length mutation that may be one of the key explanations for the genetic variation in plastid genomes.  相似文献   
75.

Background

Echocardiographic signs of constrictive physiology (CP) after pericardiocentesis are frequently observed in malignancy patients. The purpose of the current study was to explore whether features of CP after pericardiocentesis have prognostic impact in malignancy patients with pericardial effusion (PE).

Methods

We retrospectively reviewed 467 consecutive patients who underwent pericardiocentesis at our institution from January 2006 to May 2014. Among them, 205 patients with advanced malignancy who underwent comprehensive echocardiography after the procedure comprised the study population. Co-primary end points were all-cause mortality (ACM) and repeated drainage (RD) for PE. Patients were divided into four subgroups according to cytologic result for malignant cells and CP (positive cytology with negative CP, both positive, both negative, and negative cytology with positive CP).

Results

CP after pericardiocentesis was present in 106 patients (50%) at median 4 days after the procedure. During median follow-up of 208 days, ACM and RD occurred in 162 patients (79%) and 29 patients (14%), respectively. Cox regression analysis revealed that independent predictors for ACM were male gender and positive cytology (all, p < 0.05). For RD, predictors were positive cytology, the absence of cardiac tamponade, and negative CP after pericardiocentesis (all, p < 0.05). When the patients were divided into four subgroups, patients with negative cytology and positive CP demonstrated the most favorable survival (hazard ratio [HR]: 0.39, p = 0.005) and the lowest RD rates (HR: 0.07, p = 0.012).

Conclusion

CP after pericardiocentesis is common, but does not always imply poor survival or the need for RD in patients with advanced malignancies. On the contrary, the presence of CP in patients with negative cytology conferred the most favorable survival and the lowest rate of RD. Comprehensive echocardiographic evaluation for CP after pericardiocentesis would be helpful for predicting prognosis in patients with advanced malignancies.  相似文献   
76.
Accumulating evidence has suggested the requirement for further stratification of patients in the same tumor stage according to molecular factors. We evaluate the combination of cancer stage and DNA methylation status as an indicator of the risk of recurrence and mortality among patients with colorectal cancer (CRC). A cohort study of 215 patients with CRC (mean age 64.32 years; 50.5% of men) from Tri-Service General Hospital in Taiwan examined the association between cancer stage and risk of CRC recurrence and mortality. A Cox proportional hazard model was used to analyze patient methylation status and clinical information at study entry, and their associations with CRC recurrence and mortality during follow-up. The advanced stage patients with p16, hMLH1, and MGMT methylation were associated with higher risk of CRC recurrence compared with the local stage patients with unmethylation status in tumor tissues, with adjusted hazard ratios (HRs) (95% confidence interval [CI]) of 9.64 (2.92–31.81), 8.29 (3.40–20.22), and 11.83 (3.49–40.12), respectively. When analyzing normal tissues, we observed similar risk of CRC recurrence with adjusted HRs (95% CI) of 10.85 (4.06–28.96), 9.04 (3.79–21.54), and 12.61 (4.90–32.44), respectively. For combined analyses, the risk of recurrence in the patients in advanced stage with DNA methylation in both normal and tumor tissues, compared with local stage with unmethylation, was increased with adjusted HR (95% CI) of 9.37 (3.36–26.09). In the advanced stage patients, methylation status and tissue subtype were associated with increased risk of 5-year cumulative CRC recurrence (p < 0.001). This study demonstrates that clustering DNA methylation status according to cancer stage and tissue subtype is critical for the assessment of risk of recurrence in CRC patients and also indicated an underlying mechanism.  相似文献   
77.
78.
Myelofibrosis (MF), including primary myelofibrosis, post-essential thrombocythemia MF, and post-polycythemia vera MF, has been reported to be associated with autoimmune phenomena. IMiDs have been reported to be effective in some patients with MF, presumably for their immune-modulator effects. We therefore sought to elucidate the immune derangements in patients with MF. We found no differences in T regulatory cells (Treg) and T helper 17 (Th17) cells in MF patients and normal healthy controls. However, we found significantly elevated soluble interleukin 2 alpha (sIL2Rα) in MF patients compared to those with other myeloproliferative neoplasm diseases and normal healthy controls. Our studies with MF patients further revealed that Treg cells were the predominant cells producing sIL2Rα. sIL2Rα and IL2 complex induced the formation of Treg cells but not the formation of Th1 or Th17 cells. sIL2Rα induced CD8+ T cell proliferation in the presence of Treg cells. Monocytes or neutrophils had no effect on the production of sIL2Rα by Treg cells. Furthermore, we found plasma sIL2Rα levels were correlated to the auto-immune serology in MPN patients and ruxolitinib significantly inhibits the sIL2Rα production by the Treg cells in MF patients which may explain the effects of ruxolitinib on the relief of constitutional symptoms. All these findings suggest that sIL2Rα likely plays a significant role in autoimmune phenomena seen in patients with MF. Further studies of immune derangement may elucidate the mechanism of IMiD, and exploration of immune modulators may prove to be important for treating myelofibrosis.  相似文献   
79.
The poly-ADP-ribosylation (PARsylation) activity of tankyrase (TNKS) regulates diverse physiological processes including energy metabolism and wnt/β-catenin signaling. This TNKS activity uses NAD+ as a co-substrate to post-translationally modify various acceptor proteins including TNKS itself. PARsylation by TNKS often tags the acceptors for ubiquitination and proteasomal degradation. Whether this TNKS activity is regulated by physiological changes in NAD+ levels or, more broadly, in cellular energy charge has not been investigated. Because the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) in vitro is robustly potentiated by ATP, we hypothesized that nutritional energy might stimulate cellular NAMPT to produce NAD+ and thereby augment TNKS catalysis. Using insulin-secreting cells as a model, we showed that glucose indeed stimulates the autoPARsylation of TNKS and consequently its turnover by the ubiquitin-proteasomal system. This glucose effect on TNKS is mediated primarily by NAD+ since it is mirrored by the NAD+ precursor nicotinamide mononucleotide (NMN), and is blunted by the NAMPT inhibitor FK866. The TNKS-destabilizing effect of glucose is shared by other metabolic fuels including pyruvate and amino acids. NAD+ flux analysis showed that glucose and nutrients, by increasing ATP, stimulate NAMPT-mediated NAD+ production to expand NAD+ stores. Collectively our data uncover a metabolic pathway whereby nutritional energy augments NAD+ production to drive the PARsylating activity of TNKS, leading to autoPARsylation-dependent degradation of the TNKS protein. The modulation of TNKS catalytic activity and protein abundance by cellular energy charge could potentially impose a nutritional control on the many processes that TNKS regulates through PARsylation. More broadly, the stimulation of NAD+ production by ATP suggests that nutritional energy may enhance the functions of other NAD+-driven enzymes including sirtuins.  相似文献   
80.
Delayed healing or non-union of skeletal fractures are common clinical complications. Ibandronate is a highly potent anti-catabolic reagent used for treatment of osteopenia and fracture prevention. We hypothesized that local application of ibandronate after fracture fixation may improve and sustain callus formation and therefore prevent delayed healing or non-union. This study tested the effect of local application of an ibandronate/gelatin sponge composite on osteotomy healing. A right-side distal-femoral osteotomy was created surgically, with fixation using a k-wire, in forty adult male rabbits. The animals were divided into four groups of ten animals and treated by: (i) intravenous injection of normal saline (Control); (ii) local implantation of absorbable gelatin sponge (GS); (iii) local implantation of absorbable GS containing ibandronate (IB+GS), and (iv) intravenous injection of ibandronate (IB i.v.). At two and four weeks the affected femora were harvested for X-ray photography, computed tomography (CT), biomechanical testing and histopathology. At both time-points the results showed that the calluses in both the ibandronate-treated groups, but especially in the IB+GS group, were significantly larger than in the control and GS groups. At four weeks the cross sectional area (CSA) and mechanical test results of ultimate load and energy in the IB+GS group were significantly higher than in other groups. Histological procedures showed a significant reduction in osteoclast numbers in the IB+GS and IB i.v. groups at day 14. The results indicate that local application of an ibandronate/gelatin sponge biomaterial improved early osteotomy healing after surgical fixation and suggest that such treatment may be a valuable local therapy to enhance fracture repair and potentially prevent delayed or non-union.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号